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Francisco Bento Lustosa

7 de dezembro de 2025

Resumo

O objetivo deste curso é introduzir estudantes em qualquer estágio de formação universitária ao assunto da Teoria Quântica de
Campos. Apesar de não assumir nenhum conhecimento prévio de Mecânica Quântica, o curso não contará com uma introdução ao
formalismo da relatividade especial de forma detalhada. Ênfase será dada à introdução dos conceitos relativos à Mecânica Quântica
necessários à uma introdução à quantização de campos relativı́sticos. Uma breve introdução ao formalismo clássico Hamiltoniano
será apresentada, seguida de uma descrição detalhada do formalismo e dos exemplos básicos da teoria quântica. Utilizaremos softwares
computacionais e/ou programação com Python para ajudar na compreensão dos problemas básicos do oscilador harmônico e do poço
de potencial, ressaltando a importância desses exemplos em aplicações na Teoria Quântica de Campos. Na segunda parte, introduzi-
remos às equações de Klein-Gordon e de Dirac e discutiremos o conceito de vácuo quântico abrindo o caminho um entendimento
básico de problemas modernos como o efeito Unruh e a radiação de Hawking. Na última parte discutiremos o papel fundamental das
simetrias na Teoria Quântica de Campos, o conceito de spin e outros números quânticos, soluções de campos livres e suas aplicações.

Essas notas são um resumo dos conceitos discutidos no Minicurso de Introdução à Teoria Quântica de campos ministrado na
Faculdade de Educação, Ciências e Letras de Iguatu, campus da Universidade Estadual do Ceará (FECLI/UECE) ministrado pelo
Dr. Francisco Bento Lustosa que é bolsista do Programa de Desenvolvimento Regional Cientı́fico e Tecnológico da Fundação Cea-
rense de Apoio ao Desenvolvimento Cientı́fico e Tecnológico e com apoio do Conselho Nacional Cientı́fico e Tecnológico (PDCTR-
FUNCAP/CNPQ - processo 305947/2024-9).
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1 Introdução à Teoria Quântica de Campos

“quantum theory in its present form actually presupposes
the correctness of classical concepts. We shall then be led

to the conclusion that classical concepts cannot be regarded
as limiting forms of quantum concepts, but must instead

be combined with quantum concepts in such a way that,
in a complete description, each complements the other.”

David Bohm, “Quantum Theory”, 1951.
beginequation]

1.1 Conceitos Fundamentais
No inı́cio do século XX Max Planck, Albert Einstein, Paul Ehrenfest, Niels Bohr e muitos outros trabalharam arduamente para enten-
der os resultados experimentais que vinham da quı́mica, da termodinâmica e da fı́sica eletromagnética desafiando a sólida compreensão
do Universo construı́da ao longo dos séculos anteriores. Um dos principais debates da época se dava em torno da existência de entida-
des básicas, discretas, constituidoras da matéria - moléculas, átomos ou partı́culas. Apesar de Ludwig Boltzmann ter realizado imensos
avanços na compreensão da termodinâmica à partir de sua teoria cinética dos gases, foi apenas com os trabalhos de Einstein sobre o
movimento Browniano que a ideia de que os lı́quidos, gases e sólidos pudessem ser constituı́dos por entidades discretas guiadas por
leis fı́sicas microscópicas foi aceita. Em particular, Max Planck, famoso por ter introduzido o conceito de quanta de radiação, era um
dos maiores opositores à ideia de uma Natureza fundamentalmente discreta. Não obstante, os resultados experimentais do espectro
atômico, perfeitamente descritos pelo modelo de Bohr, serviram de evidência inegável da natureza atômica da matéria. No entanto,
sérias dúvidas permaneceram desafiando os fı́sicos da geração seguinte à estender e melhorar as ideias de seus predecessores.

Durante o inı́cio da década de 1920, fı́sicos em diferentes partes da Europa trabalhavam de maneira independente na tentativa
de transformar as condições de quantização da energia de Planck e das órbitas de Bohr em uma teoria consistente dos fenômenos
microscópicos. Já nesse perı́odo, uma das principais preocupações dos fı́sicos da época era a consistência de uma nova teoria quântica
à teoria da relatividade especial de Einstein, proposta em 1905, generalizada em 1915 na Teoria da Relatividade Geral e corroborada por
inúmeras observações culminando com o eclipse de 1919. Nessa teoria todas as interações são limitadas por uma velocidade máxima
c, a velocidade da luz se propagando no vácuo. No entanto, o formalismo que emergiu a partir de contribuições de fı́sicos como
Louis de Broglie, Erwin Schrödinger, Werner Heisenberg, Max Born, Pascual Jordan, Paul Dirac, Wolgang Pauli e tantos outros,
culminando no final da década no que chamamos hoje de Mecânica Quântica1 era radicalmente diferente daquele desenvolvido por
Einstein no contexto relativı́stico. Enquanto na teoria relativı́stica todas as novas leis e previsões tem um limite não-relativı́stico claro e
que corresponde com as teorias de Newton e de Maxwell, na Mecânica Quântica de Heisenberg, Born e Dirac o elemento fundamental
da teoria, a função de onda, não só não tem correspondente clássico como exige uma revisão radical de conceitos fundamentais como
posição, energia e medição de quantidades fı́sicas. O livro de David Bohm de 1951 Bohm (1989) descreve com detalhes todos os conceitos
e as aplicações básicas da Mecânica Quântica não-relativı́stica bem como oferece uma visão bem clara das limitações fundamentais dessa
“teoria”2. Neste livro, em especial no Capı́tulo 23 entitulado “Relationship between Quantum and Classical Concepts”, fica explı́cito
que a descrição dos fenômenos quânticos oferecida pelos membros do que ficou conhecida como a “Escola de Copenhagen”, é uma
descrição que pressupõe a existência de um mundo clássico no qual os sistemas quânticos são observados. Isso ocorre porque qualquer
estado fı́sico é considerado como “indefinido”até que seja medido, e essa indefinição não é de forma alguma um artefato matemático
mas uma imposição dos postulados da teoria quântica. Elétrons livres em uma caixa não tem posição, tem apenas uma superposição de
potenciais posições que só podem ser observadas através da interação com um sistema clássico (uma tela fosforescente, por exemplo).

A principal limitação da teoria quântica está na sua incapacidade de fazer previsões para eventos individuais. Sendo os observáveis
todos relacionados à autovalores de operadores que poderiam ter múltiplos valores, toda previsão se refere à probabilidades que só
podem ser tornar evidentes depois de inúmeras repetições dos experimentos. Mas em 1927 todos os experimentos relevantes eram
realizados com feixes de átomos ou elétrons contendo um número altı́ssimo de quanta e a visão probabilı́stica dos fenômenos foi
extremamente bem sucedida em prever corretamente resultados de experimentos em diversas áreas da fı́sica, incluindo fenômenos com
efeitos relativı́sticos. Isso foi possı́vel devido ao artigo monumental de Paul Dirac de 1928, “The Quantum Theory of the Electron”, que
derivou a equação de onda da mecânica quântica impondo a invariância relativı́stica e pode demonstrar uma origem mais fundamental
do spin do elétron a partir de suas simetrias. Muitos consideram esse o trabalho fundador da Teoria Quântica de Campos, pois a partir
dele também foi possı́vel prever a existência do “anti-elétron”, o pósitron, que foi detectado pela primeira vez poucos anos depois.

1O que se chama comumente de Mecânica Quântica é, na verdade, a interpretação de Copenhagen da Mecânica Quântica, já que se presume a ocorrência de colapso
da função de onda, a necessidade do conceito de complementaridade para explicar o mundo clássico e uma desassociação do estado quântico a qualquer dinâmica fı́sica
para evitar problemas com a relatividade especial através da não-localidade de estados não-separáveis.

2Alguns filósofos argumentam que o que os fı́sicos costumam chamar de “Mecânica Quântica”é um conjunto de regras que permitem fazer previsões em situações
especı́ficas, mas sem uma interpretação clara e uma ontologia bem definida não se qualifica como uma Teoria.
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Também foi nesse trabalho que ficou claro que efeitos relativı́sticos são fundamentais na compreensão da fı́sica sub-atômica e que é
possı́vel usar as simetrias clássicas como ponto de partida para teorias quânticas com poder de previsão de novos fenômenos inesperados.

Os anos subsequentes são talvez os anos mais intensos na história da fı́sica no que se trata da interação entre teoria e experimentos.
A existência de pósitrons foi apenas o primeiro passo na longa história do estudo da anti-matéria que persiste até hoje e contém um dos
grandes mistérios do nosso Universo: por que há mais matéria do que anti-matéria? Uma compreensão mais precisa dos fenômenos
radioativos levou à descoberta das interações fracas e à previsão da existência dos neutrinos. Métodos perturbativos introduzidos nos
anos 40 e 50 contribuı́ram para eliminar problemas de divergências que afetavam previsões para espalhamentos mais energéticos ou
distâncias muito pequenas.

Resumo:

• Fusão de teorias: A Teoria Quântica de Campos emerge da sı́ntese conceitual entre a Mecânica Quântica e a Relatividade
Especial.

• Pilares fundamentais: Os princı́pios basilares de qualquer TQC são:

– Princı́pio de superposição dos estados quânticos
– Princı́pio de localidade (causalidade*)

• Observáveis: Na TQC, os observáveis são descritos por valores esperados de operadores atuando sobre os campos.

• Campos como distribuições: Formalmente, campos são distribuições que assumem valores em espaços de operadores defini-
dos em domı́nios de espaços de Hilbert.

• Relações de comutação: Para o campo ϕ(x) e seu momento conjugado Π(x), temos:

[ϕ(x),Π(y)]x0=y0 = iδ3(x⃗− y⃗) (1)

• Divergências: No cálculo de amplitudes de transição entre estados do campo, surgem naturalmente divergências que requerem
tratamento especial.

• Contribuidores fundamentais na solução dessas divergências: Dyson, Feynman, Salam, Schwinger, Tomonaga, Wick...
Leitura recomendada:

– “Selected Papers on Quantum Electrodynamics”, J. Schwinger
– “Richard Feynman e a QED”, V. Pleirez (Rev Bras de Ensino de Fı́s. 40(4) 2018)

• Teorias de perturbação: Métodos baseados em expansões perturbativas (acoplamento fraco) foram desenvolvidos para renor-
malizar e regularizar essas divergências.

• Teoria eletrofraca: resolveu a renormalização das interações fracas

• Revolução das teorias de calibre: (Anos 60/70) QCD (Cromodinâmica Quântica): descreveu consistentemente as interações
fortes

• Validação experimental: A previsão e observação consistente de novas partı́culas, em especial hádrons (combinações de quarks),
consolidou a aceitação das Teorias Quânticas de Campos como a descrição mais precisa do mundo subatômico.

1.2 Dos Campos às Partı́culas
Aprendemos na escola que os blocos básicos da matéria são partı́culas. Esta perspectiva persiste no ensino universitário, onde frequen-
temente descrevemos quarks e elétrons como “tijolos fundamentais” da matéria. No entanto, esta visão oculta uma realidade mais
profunda: de acordo com nossas melhores teorias fı́sicas, os constituintes fundamentais da Natureza não são partı́culas discretas,
mas sim entidades contı́nuas, semelhantes a fluidos, distribuı́das por todo o espaço - os campos. Os exemplos mais conhecidos são o
campo elétrico e o campo magnético. As ondulações nesses campos manifestam-se como luz ou, mais genericamente, radiação eletro-
magnética. Quando examinamos essas ondas eletromagnéticas microscopicamente, descobrimos que elas são compostas por partı́culas
denominadas fótons. Este fenômeno de “transformação” de ondulações campais em partı́culas através dos efeitos quânticos é univer-
sal:

• Existe um campo do elétron cujas excitações quantizadas correspondem aos elétrons

• Existem campos de quarks, glúons e bósons de Higgs
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• Cada partı́cula constituinte de nosso corpo - e de todo o Universo - representa uma excitação quantizada do campo subjacente

Os campos quânticos são objetos intrinsecamente complexos por várias razões. Contêm em si toda a fı́sica, descrevendo inúmeras
partı́culas interagindo de múltiplas formas. Além disso, o princı́pio de Heisenberg implica que campos quânticos nunca estão estáticos,
mas sim em constante flutuação. O vácuo quântico é uma “sopa” borbulhante de partı́culas e antipartı́culas virtualmente criadas e
destruı́das. Até mesmo o conceito de “nada” (vácuo) torna-se complexo na TQC. A introdução de partı́culas distorce o vácuo de
maneiras não triviais, e compreender estas distorções constitui fronteira ativa de pesquisa.

Na Fı́sica Clássica campos são gerados por fontes (“cargas”) associadas às simetrias dos campos. O potencial elétrico de Coulomb
gerado por uma carga pontual em r = 0, por exemplo, é dado por:

V (r) =
1

4πϵ0

Q

r
(2)

O que ocorre quando r → 0? A teoria clássica apresenta singularidades. Será que a teoria quântica resolve essas singularidades?
Sistemas quânticos são descritos por funções de onda que introduzem incertezas fundamentais.

• Comprimento de onda Compton do elétron:

λc =
h

mec
≈ 2.4× 10−12 m (3)

• Incerteza mı́nima na localização: λc representa a escala abaixo da qual a posição do elétron torna-se indefinida

• Energia de flutuação correspondente:

∆E =
hc

λc
∼ 0.5MeV (4)

Para distâncias r < λc, tentativas de interação com o elétron levam à criação de novas partı́culas. Este fenômeno revela a
necessidade de uma teoria que unifique consistentemente a relatividade e a mecânica quântica - a Teoria Quântica de Campos.

1.3 Revisão: Mecânica Clássica e Formalismo Hamiltoniano
1.3.1 Princı́pio de Mı́nima Ação

O princı́pio de mı́nima ação constitui um dos pilares fundamentais da mecânica clássica, fornecendo uma formulação elegante e po-
derosa para descrever a evolução temporal dos sistemas fı́sicos. A mecânica quântica se baseia no formalismo clássico para a construção
básica das suas equações. Em particular, é a partir do Hamiltoniano e das variáveis (q, p) do espaço de fase que obteremos as equações
básicas que serão quantizadas pelo formalismo canônico.

Para um sistema descrito por uma coordenada generalizada q(t) e com LagrangianaL(t, q(t), q̇(t)) a ação é definida como:

S =

∫ t2

t1

L(t, q(t), q̇(t)) dt, onde q̇(t) =
dq

dt
(5)

Condição variacional: As trajetórias fı́sicas são aquelas que extremizam a ação:

δS = 0 (condição necessária para trajetória fı́sica) (6)

Exemplo ilustrativo: Para o oscilador harmônico, a Lagrangiana é:

L(q, q̇) =
1

2
(q̇2 − ω2q2) (7)

e a variação da ação escreve-se:
δS[q, δq] = S[q + δq]− S[q] (8)

1.3.2 Derivação das Equações de Euler-Lagrange

Para deduzir as equações do movimento, consideramos a variação primeira da ação:

δS =

∫ t2

t1

[
∂L

∂q
δq(t) +

∂L

∂q̇
δq̇(t)

]
dt+O(δq2) (9)
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Aplicando a integração por partes,
∫
u dv = uv −

∫
v du, com u = ∂L

∂q̇ e dv = δq̇(t) dt, obtemos:∫ t2

t1

∂L

∂q̇
δq̇(t)dt =

[
∂L

∂q̇
δq(t)

]t2
t1

−
∫ t2

t1

d

dt

(
∂L

∂q̇

)
δq(t)dt (10)

Substituindo na expressão original:

δS =

[
∂L

∂q̇
δq(t)

]t2
t1

+

∫ t2

t1

[
∂L

∂q
− d

dt

∂L

∂q̇

]
δq(t)dt+O(δq2) (11)

Condições de contorno e princı́pio variacional: considerando que δq(t1) = 0 e δq(t2) = 0 (variações nos extremos são nulas), e
que δS não pode depender de termos de primeira ordem em δq(t) (o princı́pio de mı́nima ação exige δS = 0 para trajetórias fı́sicas),
obtemos as equações de Euler-Lagrange:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (12)

Para o oscilador harmônico simples, temos:

S =

∫
Ldt =

∫
1

2

(
q̇2 − ω2q2

)
dt ⇒ q̈ + ω2q = 0 (13)

A solução da equação do movimento é:
q(t) = A cos(ω(t+ t0)) +B sin(ωt) (14)

Especificando as condições iniciais:

q(t1) = q1; q(t2) = q2; A =
q2 − q1 cos[ω(t2 − t1)]

sin[ω(t2 − t1)]
(15)

Generalizações e Formalismo Funcional

Derivada funcional: A condição variacional pode ser expressa através da derivada funcional:

δS

δq(t)
= 0 (16)

Formulação com distribuições: Para derivadas de segunda ordem, reescrevemos usando distribuições:

q̈(t) + ω2q(t) =

∫
[δ′′(t− t1) + ω2δ(t− t1)]q(t)dt (17)

onde δ(t− t1)[f ] = f(t1) define a ação da distribuição delta de Dirac.

Derivada funcional de funcionais lineares: Para um funcional linear
∫
q(t)f(t)dt, temos:

δ

δq(t1)

∫
q(t)f(t)dt = f(t1) (18)

Extensão para Teoria de Campos clássicos

Para um campo escalar em 3D:

S[ϕ] =
1

2

∫
d3x dt (∇ϕ)2 (19)

A derivada funcional fornece a equação de movimento:

δS[ϕ]

δϕ(x, t)
= −∇2ϕ(x, t) = −∆ϕ(x, t) (20)

Utilizamos a identidade:
∇ · (δϕ∇ϕ) = ∇δϕ · ∇ϕ+ δϕ∇2ϕ (21)

Aplicando o teorema da divergência: ∫
d3x dt∇ · (δϕ∇ϕ) =

∮
δϕ∇ϕ · dA⃗ (22)

sendo dA⃗ o elemento de área da fronteira, com a condição de que ϕ(x, t) → 0 quando |x| → ∞.
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1.3.3 Transformação de Legendre e Formalismo Hamiltoniano

Para uma função f(x), definimos a transformação de Legendre:

p =
df

dx
, g(p) = px(p)− f(x(p)), x =

dg

dp
. (23)

Aplicando essa transformação para substituir q̇ por p:

p =
∂L

∂q̇
(24)

Assumindo que possamos encontrar q̇ = v(p; q, t), definimos a Hamiltoniana como:

H(p, q, t) = [pq̇ − L(t, q, q̇)]q̇=v(p;q,t) (25)

As equações de Euler-Lagrange transformam-se em:
dp

dt
=
∂L

∂q

∣∣∣∣
q̇=v

(26)

onde a solução de dq
dt = v(p; q, t) deve ser substituı́da após a diferenciação. Calculando as derivadas parciais:

∂H

∂q
=

∂

∂q
(pv − L) = p

∂v

∂q
− ∂L

∂q
− ∂L

∂q̇

∂v

∂q
= −∂L

∂q

∂H

∂p
=

∂

∂p
(pv − L) = v + p

∂v

∂p
− ∂L

∂q̇

∂v

∂p
= v

Obtemos assim as famosas equações canônicas de Hamilton:

q̇ =
∂H

∂p
e ṗ = −∂H

∂q
(27)

Ação na forma Hamiltoniana:

SH =

∫
[pq̇ −H(p, q, t)]dt (28)

Variando a ação Hamiltoniana:

δSH =

∫ [
q̇ − ∂H

∂p

]
δp dt+

∫ [
−ṗ− ∂H

∂q

]
δq dt, (29)

e utilizando integração por partes: ∫
pδq̇ dt = −

∫
ṗδq dt (usando [pδq]t2t1 = 0). (30)

Portanto, as condições de extremização levam a:

δSH

δp
= 0 ⇒ q̇ =

∂H

∂p
;

δSH

δq
= 0 ⇒ ṗ = −∂H

∂q
(31)

Esta formulação Hamiltoniana proporciona uma transição natural para a quantização dos sistemas clássicos, como veremos na próxima
seção.

1.3.4 Princı́pio da Correspondência e Quantização Canônica

A quantização dos sistemas hamiltonianos segue o princı́pio da correspondência, primeiramente articulado por Niels Bohr como
um princı́pio orientador para o desenvolvimento da teoria quântica. Bohr reconheceu que qualquer teoria quântica válida deve re-
produzir a fı́sica clássica no limite em que os efeitos quânticos se tornam negligenciáveis. Este princı́pio foi inspirado pelo sucesso das
condições de quantização anteriores (quantização de energia de Planck, integrais de espaço de fase de Bohr-Sommerfeld-Wilson), mas
buscava uma conexão mais fundamental entre as descrições clássica e quântica.

Na mecânica quântica moderna, este princı́pio é matematicamente realizado através da quantização canônica, onde variáveis
clássicas (q(t), p(t)) são promovidas a operadores quânticos (q̂(t), p̂(t)) que satisfazem as relações canônicas de comutação:

[q̂(t), p̂(t)] = iℏ (32)



8 Notas do Minicurso de Introdução a Teoria Quântica de Campos

A conexão com a mecânica clássica é explicitada através do teorema de Ehrenfest, que afirma que os valores esperados dos ope-
radores quânticos obedecem às equações de movimento clássicas:

d

dt
⟨q̂⟩ = ⟨p̂⟩

m
,

d

dt
⟨p̂⟩ = −

〈
∂V

∂q

〉
(33)

Na imagem de Heisenberg, a evolução dos operadores reflete diretamente a mecânica hamiltoniana clássica:

dq̂

dt
=
i

ℏ
[Ĥ, q̂];

dp̂

dt
=
i

ℏ
[Ĥ, p̂] (34)

Estas equações recuperam a mecânica clássica no limite ℏ → 0:

dq̂

dt
=
∂H

∂p
+O(ℏ);

dp̂

dt
= −∂H

∂q
+O(ℏ) (35)

A contribuição profunda de Paul Dirac foi reconhecer que a correspondência entre os colchetes de Poisson clássicos e os comutadores
quânticos fornece a ponte essencial para a quantização:

{q, p}PB = 1 −→ 1

iℏ
[q̂, p̂] = 1 (36)

Esta abordagem algébrica generaliza naturalmente para funções arbitrárias:

[q̂, f(q̂, p̂)] = iℏ
∂f

∂p
(37)

Nesta forma, relações algébricas entre operadores capturam a essência da teoria quântica, independentemente de qualquer representação
especı́fica dos estados. Essa percepção foi crucial para o desenvolvimento da teoria quântica de campos, onde as mesmas relações de
comutação se aplicam aos operadores de campo. No entanto, uma notação onde os operadores variam com o tempo e os estados per-
manecem fixos pode ser substituı́da por uma onde os estados quânticos carreguem a evolução temporal e os operadores permaneçam
fixos caracterizando os observáveis da teoria de maneira equivalente a formulação acima. Nas notações de Dirac ou de Schrodinger
os estados quânticos tem papel central e como elas também se tornam úteis em diversos problemas de interesse atual na TQC nos
tornaremos para elas pelas próximas seções.

1.4 Notação de Dirac e Estrutura Matemática da Mecânica Quântica
Antes de listarmos as definições necessárias para uma compreensão mais técnica da estrutura matemática da mecanica quantica, é
importante relembrarmos os postulados da mesma em sua versão mais direta.

Postulado 1 — Espaço de estados
A cada sistema fı́sico associa-se um espaço de Hilbert complexo separável H. Um estado fı́sico é representado por um vetor de estado
|ψ⟩, normalizado, ou por um operador densidade ρ que descreve estados puros e mistos. Estados puros são representados por funções
de onda ψ(x) = ⟨x|ψ⟩ no espaço de configurações.

⟨ψ|ψ⟩ = 1, ρ =
∑
i

pi|ψi⟩⟨ψi|,
∫

|ψ(x)|2 dx = 1.

Postulado 2 — Observáveis
Cada observável fı́sico é representado por um operador auto-adjunto Â no espaço de Hilbert. Seus resultados possı́veis são determi-
nados pelo espectro do operador, formalizado pela decomposição espectral de von Neumann que associa a cada intervalo do espectro
um projetor.

Â =

∫
a dP̂A(a).
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Postulado 3 — Regra de Born e valores esperados
A probabilidade de obter um valor a na medida do observável A, quando o sistema está no estado ρ, é dada pela regra de Born. Para
estados puros |ψ⟩, a probabilidade pode ser escrita diretamente em termos da função de ondaψ(x), usando representações apropriadas
do operador projetor na base de posições ou de autovalores do observável.

P (a) = Tr(ρPA(a)), P (a) = ⟨ψ|PA(a)|ψ⟩.

Na base de posições: P (x0) = |ψ(x0)|2.

Para observáveis contı́nuos: P (a) = |⟨a|ψ⟩|2 .

⟨A⟩ = Tr(ρÂ) = ⟨ψ|Â|ψ⟩ =
∫
ψ∗(x) (Âψ)(x) dx.

Postulado 4 — Evolução temporal
A evolução temporal de um sistema quântico é unitária e gerada pelo HamiltonianoH . Dependendo da representação (Schrödinger,
Heisenberg ou interação), a evolução ocorre nos estados, nos operadores ou em ambos. Todas as representações são matematicamente
equivalentes e relacionadas por transformações unitárias.

Representação de Schrödinger:

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩, iℏ

dρ

dt
= [H, ρ].

Representação de Heisenberg:

ÂH(t) = U†(t)ÂSU(t), iℏ
dÂH

dt
= [ÂH , H] + iℏ

∂ÂS

∂t
.

Representação de Dirac/Interação:

|ψI(t)⟩ = eiH0t/ℏ|ψS(t)⟩, ÂI(t) = eiH0t/ℏÂSe
−iH0t/ℏ,

iℏ
d

dt
|ψI(t)⟩ = VI(t) |ψI(t)⟩, VI(t) = eiH0t/ℏV e−iH0t/ℏ.

Postulado 5 — Processo de medida (colapso)
Após uma medida com resultadoa, o estado do sistema sofre a atualização não unitária descrita pela regra de projeção de von Neumann
(ou de Lüders). Esse processo descreve a transição descontı́nua do estado fı́sico causada pelo ato de medir um observável.

|ψ⟩ −→ PA(a)|ψ⟩√
⟨ψ|PA(a)|ψ⟩

, ρ −→ PA(a)ρPA(a)

Tr(ρPA(a))
.

1.4.1 Espaços Vetoriais em Mecânica Quântica

A notação de Dirac proporciona uma linguagem poderosa e elegante para descrever a estrutura matemática da mecânica quântica.

• Espaços de dimensão finita: Compostos por uma coleção discreta de componentes, representando sistemas com número
finito de estados.

• Espaços de dimensão infinita: Possuem infinitas componentes. O exemplo fundamental é o espaçoL2 das funções de onda:

L2 =

{
ψ : C → C

∣∣∣∣ ∫ ∞

−∞
|ψ(q)|2dq <∞

}
(38)

• Interpretação de funções como vetores: Uma função ψ(q) ∈ L2 pode ser vista como um vetor com infinitas componentes
ψq = ψ(q).
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• Espaço de estados: Para uma partı́cula pontual, o espaço de estados é exatamenteL2 quando q = x representa a posição.

• Generalização para TQC: Em Teoria Quântica de Campos, as coordenadas x são substituı́das por configurações de campos
ϕ(x) e os estados tornam-se funcionais Ψ[ϕ(x)].

1.4.2 Operadores Lineares e Suas Propriedades

Linearidade: Um operadorA : V → V satisfaz:

A(α|v⟩+ β|w⟩) = αA|v⟩+ βA|w⟩ (39)

Formas lineares e produtos escalares:

• Formas lineares f : V → C são funcionais que atuam em vetores |v⟩ produzindo números complexos ⟨f |v⟩

• O produto escalar ⟨v|w⟩ permite definir elementos de matriz de operadores: ⟨w|A|v⟩

• Autovetores e autovalores: Se |v⟩ é autovetor deA, entãoA|v⟩ = λ|v⟩

Hermiticidade e conjugação:

• O produto escalar é Hermitiano se ⟨v|w⟩∗ = ⟨w|v⟩, garantindo que ⟨v|v⟩ ∈ R

• O conjugado HermitianoA† é definido por:

⟨v|A†|w⟩ = ⟨w|A|v⟩∗ (40)

• Propriedades da conjugação Hermitiana:

(A+B)† = A† +B†

(λA)† = λ∗A†

(AB)† = B†A†

1.4.3 Classificação de Operadores e Suas Propriedades Espectrais

Tipos fundamentais de operadores:

• Hermitiano: A = A† (observáveis fı́sicos)

• Anti-Hermitiano: A = −A†

• Unitário: AA† = A†A = I (evoluções temporais, rotações)

Propriedades espectrais de operadores Hermitianos:

• Resultados de medida: O resultado de qualquer medida é sempre um autovalor do operador correspondente

• Observáveis: Todos os observáveis fı́sicos são representados por operadores Hermitianos

• Autovalores reais:
SeA|vi⟩ = λi|vi⟩ eA = A†, então λi ∈ R (41)

• Ortogonalidade de autovetores:
⟨vi|vj⟩ = 0 para λi ̸= λj (42)

1.4.4 Espaços de Hilbert: Estrutura e Propriedades

Bases em dimensão finita: Em um espaço vetorial N-dimensional, qualquer vetor pode ser expandido em uma base:

|vi⟩ =
N∑

n=1

vn|en⟩ (43)
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Ortonormalidade: Uma base {|en⟩} é ortonormal se:

⟨em|en⟩ = δmn (44)

Produto escalar em bases: Em uma base ortonormal, o produto escalar torna-se:

⟨vi|vj⟩ =
N∑

n=1

v∗i,nvj,n (45)

Condição de Hilbert em dimensão infinita: Em espaços de dimensão infinita, a condição para pertencer ao espaço de Hilbert é:

⟨vi|vi⟩ =
∞∑

n=1

|vi,n|2 <∞ (46)

Esta condição garante a completude do espaço e a existência de limites adequados.
Na formulação matemática da mecânica quântica proposta por Dirac e sistematizada por von Neumann, os estados fı́sicos são

representados como vetores de um espaço vetorial complexo dotado de estrutura geométrica e topológica bem definida. Esse espaço
é um espaço de Hilbert, cuja definição completa exige as propriedades de completeza e separabilidade. Ambas desempenham papéis
centrais para a consistência fı́sica e matemática do formalismo de bras e kets e da teoria espectral de observáveis.

Espaços de Hilbert
Um espaço de Hilbert H é um espaço vetorial complexo munido de um produto interno ⟨·, ·⟩ : H×H → C, que satisfaz linearidade
no primeiro argumento, conjugação no segundo e positividade. Esse produto interno induz uma norma ∥x∥ =

√
⟨x, x⟩, de modo

que H se torna um espaço normado. A exigência adicional de que o espaço seja completo em relação a essa norma distingue os espaços
de Hilbert dos espaços pré-Hilbert.

A ideia de completude garante que limites de sequências de estados, expansões em bases, desenvolvimentos de Fourier generalizados
e procedimentos de aproximação conduzam sempre a estados que permanecem dentro do próprio espaço. Sem a propriedade de
completude, o espaço de estados seria instável sob operações de limite, e ferramentas fundamentais, como a decomposição espectral
de operadores auto-adjuntos, deixariam de ser garantidas. Assim, a completude assegura que operações matemáticas fundamentais à
teoria resultem sempre em estados fisicamente válidos.

Completeza
Um espaço normado é dito completo quando toda sequência de Cauchy {xn} ⊂ H converge para um limite também pertencente
ao espaço. Essa propriedade é essencial na mecânica quântica porque a teoria espectral de operadores auto-adjuntos, que fundamenta
a interpretação dos observáveis, requer a existência de limites em norma e medidas espectrais bem definidas. A evolução temporal
unitária, formalizada pelo teorema de Stone, também depende da completeza do espaço para garantir que o operador unitárioU(t) =
e−iHt/ℏ esteja corretamente definido em todo o domı́nio relevante. Além disso, a convergência de expansões de estados em bases
ortonormais, como

|ψ⟩ =
∑
n

cn|n⟩,

depende diretamente da completeza do espaço, que garante a existência do limite em norma. Desse modo, a completude é indispensável
para que o formalismo quântico seja matematicamente estável e operacionalmente consistente.

Separabilidade
O espaço de Hilbert utilizado na mecânica quântica deve ser também separável. Um espaço é dito separável quando admite um con-
junto denso enumerável, ou, de forma equivalente, quando possui uma base ortonormal enumerável {en}n∈N. Isso significa que
qualquer vetor do espaço pode ser aproximado arbitrariamente bem por combinações lineares finitas desses vetores. A separabilidade
possui importância fı́sica imediata, pois qualquer experimento real acessa apenas um número contável de resultados distinguı́veis,
e a teoria deve refletir essa limitação fundamental da informação fı́sica. Ela também é essencial para o formalismo de Dirac, pois a
representação de estados como séries de coeficientes, como em

|ψ⟩ =
∑
n

cn|n⟩,
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pressupõe a existência de bases enumeráveis. Na ausência de separabilidade, esse tipo de expansão deixaria de ser possı́vel e a formulação
de bras e kets perderia coerência operacional.

A separabilidade garante ainda que a teoria espectral de observáveis não produza espectros com cardinalidade excessivamente
grande, evitando objetos que não correspondem a nenhum sistema fı́sico realizável. Ela impede o surgimento de operadores pa-
tológicos e assegura a aplicabilidade de teoremas estruturais fundamentais, como o teorema de Stone–von Neumann e a construção
de representações via o formalismo de GNS. Em consequência, a separabilidade constitui uma condição estrutural essencial para que
o espaço de estados represente fielmente a estrutura fı́sica dos sistemas quânticos.

A combinação das propriedades de completeza e separabilidade garante que o espaço de estados da mecânica quântica permita
trabalhar com limites, séries e expansões convergentes; possua estrutura suficientemente regular para representar observáveis auto-
adjuntos e sua dinâmica; reflita a natureza finita e contável da informação experimental; e seja compatı́vel com a formulação de bras e
kets e com a teoria espectral de von Neumann. Em sı́ntese, um espaço de Hilbert completo e separável constitui o ambiente matemático
natural em que o formalismo de Dirac–von Neumann opera de maneira rigorosa, consistente e fisicamente significativa.

1.5 Equação de Schrödinger e o formalismo de Dirac
A equação de Schrödinger é o ponto de partida para a descrição da evolução temporal de sistemas quânticos. Ela relaciona o estado do
sistema, representado por uma função de onda ψ(t), com o operador hamiltoniano Ĥ que descreve sua energia total:

iℏ
∂ψ

∂t
= Ĥψ. (47)

No formalismo mais geral introduzido por Dirac, os estados são vetores |ψ⟩ em um espaço vetorial abstrato (espaço de Hilbert), e
os observáveis fı́sicos são representados por operadores lineares. Essa linguagem é particularmente útil para descrever superposições,
emaranhamento e medições.

No formalismo de Schrödinger, o estado quântico de um sistema é representado por uma função de onda ψ(r, t), que satisfaz a
equação de Schrödinger dependente do tempo:

iℏ
∂

∂t
ψ(r, t) = Ĥψ(r, t) (48)

onde Ĥ é o operador Hamiltoniano.
No formalismo de Dirac, os estados são representados por vetores em um espaço de Hilbert, denotados por |ψ(t)⟩, e a evolução

temporal é dada por

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩. (49)
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