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Resumo

O objetivo deste curso é introduzir estudantes em qualquer estigio de formagio universitaria ao assunto da Teoria Quéntica de
Campos. Apesar de ndo assumir nenhum conhecimento prévio de Mecinica Quintica, o curso nio contard com uma introdugio ao
formalismo da relatividade especial de forma detalhada. Enfase ser4 dada 4 introdugdo dos conceitos relativos 2 Mecinica Quantica
necessrios 4 uma introdugio 4 quantizagio de campos relativisticos. Uma breve introdugio ao formalismo classico Hamiltoniano
serd apresentada, seguida de uma descri¢io detalhada do formalismo e dos exemplos basicos da teoria quéntica. Utilizaremos softwares
computacionais e/ou programagio com Python para ajudar na compreensio dos problemas basicos do oscilador harménico e do pogo
de potencial, ressaltando a importincia desses exemplos em aplicagdes na Teoria Quintica de Campos. Na segunda parte, introduzi-
remos as equagdes de Klein-Gordon e de Dirac e discutiremos o conceito de vicuo quintico abrindo o caminho um entendimento
bisico de problemas modernos como o efeito Unruh e a radiagio de Hawking. Na tiltima parte discutiremos o papel fundamental das
simetrias na Teoria Quéntica de Campos, o conceito de spin e outros nmeros quanticos, solug()es de campos livres e suas aplicag()es.

Essas notas sio um resumo dos conceitos discutidos no Minicurso de Introdugio 4 Teoria Quintica de campos ministrado na
Faculdade de Educagio, Ciéncias e Letras de Iguatu, campus da Universidade Estadual do Ceara (FECLI/UECE) ministrado pelo
Dr. Francisco Bento Lustosa que é bolsista do Programa de Desenvolvimento Regional Cientifico e Tecnoldgico da Fundagio Cea-
rense de Apoio ao Desenvolvimento Cientifico e Tecnoldgico € com apoio do Conselho Nacional Cientifico e Tecnolégico (PDCTR-

FUNCAP/CNPQ - processo 305947/2.024-9).
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1 Introdugio a Teoria Quantica de Campos

“quantum theory in its present form actually presupposes
the correctness of dassical concepts. We shall then be led

to the conclusion that classical concepts cannot be regarded
as limiting forms of quantum concepts, but must instead
be combined with quantum concepts in such a way that,
in a complete description, each complements the other.”
David Bobm, “Quantum Theory”, 19s1.

beginequation]

.1 Conceitos Fundamentais

No inicio do século XX Max Planck, Albert Einstein, Paul Ehrenfest, Niels Bohr e muitos outros trabalharam arduamente para enten-
der os resultados experimentais que vinham da quimica, da termodinimica e da fisica eletromagnética desafiando a sblida compreensio
do Universo construida ao longo dos séculos anteriores. Um dos principais debates da época se dava em torno da existéncia de entida-
des basicas, discretas, constituidoras da matéria - moléculas, atomos ou particulas. Apesar de Ludwig Boltzmann ter realizado imensos
avangos na compreensio da termodindmica 4 partir de sua teoria cinética dos gases, foi apenas com os trabalhos de Einstein sobre o
movimento Browniano que a ideia de que os liquidos, gases e s6lidos pudessem ser constituidos por entidades discretas guiadas por
leis fisicas microscopicas foi aceita. Em particular, Max Planck, famoso por ter introduzido o conceito de quanta de radiagio, era um
dos maiores opositores 4 ideia de uma Natureza fundamentalmente discreta. N4o obstante, os resultados experimentais do espectro
atdmico, perfeitamente descritos pelo modelo de Bohr, serviram de evidéncia inegvel da natureza atdmica da matéria. No entanto,
sérias dividas permaneceram desafiando os fisicos da geragio seguinte a estender e melhorar as ideias de seus predecessores.

Durante o inicio da década de 1920, fisicos em diferentes partes da Europa trabalhavam de maneira independente na tentativa
de transformar as condigbes de quantizagio da energia de Planck e das 6rbitas de Bohr em uma teoria consistente dos fen6menos
microscopicos. J4 nesse periodo, uma das principais preocupagdes dos fisicos da época era a consisténcia de uma nova teoria quintica
a teoria da relatividade especial de Einstein, proposta em 1905, generalizada em 1915 na Teoria da Relatividade Geral e corroborada por
intimeras observa¢des culminando com o eclipse de 1919. Nessa teoria todas as intera¢es sio limitadas por uma velocidade maxima
¢, a velocidade da luz se propagando no vicuo. No entanto, o formalismo que emergiu a partir de contribui¢es de fisicos como
Louis de Broglie, Erwin Schrédinger, Werner Heisenberg, Max Born, Pascual Jordan, Paul Dirac, Wolgang Pauli e tantos outros,
culminando no final da década no que chamamos hoje de Mecanica Quanticd]era radicalmente diferente daquele desenvolvido por
Einstein no contexto relativistico. Enquanto na teoria relativistica todas as novas leis e previsdes tem um limite nao-relativistico claro e
que corresponde com as teorias de Newton e de Maxwell, na Mecinica Quintica de Heisenberg, Born e Dirac o elemento fundamental
da teoria, a fung¢do de onda, nio s6 nio tem correspondente clissico como exige uma reviso radical de conceitos fundamentais como
posicio, energia e medigio de quantidades fisicas. O livro de David Bohm de 1951Bohm|(1989)) descreve com detalhes todos os conceitos
e as aplicagdes basicas da Mecédnica Quéntica nio-relativistica bem como oferece uma visio bem clara das limita¢des fundamentais dessa
“teoria’ Neste livro, em especial no Capitulo 23 entitulado “Relationship between Quantum and Classical Concepts”, fica explicito
que a descrigdo dos fenémenos quénticos oferecida pelos membros do que ficou conhecida como a “Escola de Copenhagen”, ¢ uma
descrigio que pressupoe a existéncia de um mundo classico no qual os sistemas quinticos sio observados. Isso ocorre porque qualquer
estado fisico é considerado como “indefinido”até que seja medido, e essa indefini¢ao nio é de forma alguma um artefato matematico
mas uma imposi¢ao dos postulados da teoria quéntica. Elétrons livres em uma caixa no tem posigio, tem apenas uma superposi¢io de
potenciais posi¢des que s6 podem ser observadas através da interagdo com um sistema clissico (uma tela fosforescente, por exemplo).

A principal limita¢do da teoria quintica estd na sua incapacidade de fazer previsdes para eventos individuais. Sendo os observaveis
todos relacionados 4 autovalores de operadores que poderiam ter maltiplos valores, toda previsdo se refere a4 probabilidades que s6
podem ser tornar evidentes depois de intimeras repeti¢cdes dos experimentos. Mas em 1927 todos os experimentos relevantes eram
realizados com feixes de dtomos ou elétrons contendo um namero altissimo de quanta e a visio probabilistica dos fendmenos foi
extremamente bem sucedida em prever corretamente resultados de experimentos em diversas areas da fisica, incluindo fendmenos com
efeitos relativisticos. Isso foi possivel devido ao artigo monumental de Paul Dirac de 1928, “The Quantum Theory of the Electron”, que
derivou a equagio de onda da mecinica quintica impondo a invariincia relativistica e pode demonstrar uma origem mais fundamental
do spin do elétron a partir de suas simetrias. Muitos consideram esse o trabalho fundador da Teoria Quéntica de Campos, pois a partir
dele também foi possivel prever a existéncia do “anti-elétron”, o positron, que foi detectado pela primeira vez poucos anos depois.

'O que se chama comumente de Mecinica Quéntica é, na verdade, a interpretagio de Copenhagen da Mecinica Quéntica, ji que se presume a ocorréncia de colapso
da fungio de onda, a necessidade do conceito de complementaridade para explicar o mundo classico e uma desassociagio do estado quintico a qualquer dinimica fisica
para evitar problemas com a relatividade especial através da ndo-localidade de estados nio-separaveis.

*Alguns fildsofos argumentam que o que os fisicos costumam chamar de “Mecinica Quéntica”é um conjunto de regras que permitem fazer previsdes em situagdes
especificas, mas sem uma interpretagio clara e uma ontologia bem definida nio se qualifica como uma Teoria.
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Também foi nesse trabalho que ficou claro que efeitos relativisticos sio fundamentais na compreensio da fisica sub-atdmica e que é
possivel usar as simetrias classicas como ponto de partida para teorias quinticas com poder de previsio de novos fendmenos inesperados.

Os anos subsequentes sdo talvez os anos mais intensos na histéria da fisica no que se trata da interagio entre teoria € experimentos.
A existéncia de pésitrons foi apenas o primeiro passo nalonga histéria do estudo da anti-matéria que persiste até hoje e contém um dos
grandes mistérios do nosso Universo: por que hi mais matéria do que anti-matéria? Uma compreensio mais precisa dos fenémenos
radioativos levou 4 descoberta das interagdes fracas e 4 previsio da existéncia dos neutrinos. Métodos perturbativos introduzidos nos
anos 40 e 5o contribuiram para eliminar problemas de divergéncias que afetavam previsdes para espalhamentos mais energéticos ou
distincias muito pequenas.

Resumo:

* Fusio de teorias: A Teoria Quintica de Campos emerge da sintese conceitual entre a Mecinica Quiéntica e a Relatividade
Especial.

* Pilares fundamentais: Os principios basilares de qualquer TQC sio:

— Principio de superposi¢ao dos estados quinticos

— Principio de localidade (causalidade*)
* Observaveis: Na TQC, os observaveis sio descritos por valores esperados de operadores atuando sobre os campos.

* Campos como distribui¢des: Formalmente, campos sio distribui¢cées que assumem valores em espagos de operadores defini-
dos em dominios de espagos de Hilbert.

* Relagdes de comutagio: Para o campo ¢() e seu momento conjugado IT(x), temos:
[6(2), T(y)so—yo = i0° (7 — §) (1)

* Divergéncias: No calculo de amplitudes de transi¢io entre estados do campo, surgem naturalmente divergéncias que requerem
tratamento especial.

* Contribuidores fundamentais na solugio dessas divergéncias: Dyson, Feynman, Salam, Schwinger, Tomonaga, Wick...
Leitura recomendada:

— “Selected Papers on Quantum Electrodynamics”, ]. Schwinger

— “Richard Feynman e a QED”, V. Pleirez (Rev Bras de Ensino de Fis. 40(4) 2018)

* Teorias de perturbagio: Métodos baseados em expansdes perturbativas (acoplamento fraco) foram desenvolvidos para renor-
malizar e regularizar essas divergéncias.

* Teoria eletrofraca: resolveu a renormalizag¢io das interacdes fracas

* Revolugio das teorias de calibre: (Anos 60/70) QCD (Cromodinidmica Quintica): descreveu consistentemente as interacdes
fortes

* Validagio experimental: A previsio e observagio consistente de novas particulas, em especial hidrons (combinagGes de quarks),
consolidou a aceita¢ao das Teorias Quinticas de Campos como a descri¢do mais precisa do mundo subatdmico.

1.2 Dos Campos as Particulas

Aprendemos na escola que os blocos basicos da matéria sdo particulas. Esta perspectiva persiste no ensino universitario, onde frequen-
temente descrevemos quarks e elétrons como “tijolos fundamentais” da matéria. No entanto, esta visio oculta uma realidade mais
profunda: de acordo com nossas melhores teorias fisicas, os constituintes fundamentais da Natureza nio sdo particulas discretas,
mas sim entidades continuas, semelhantes a fluidos, distribuidas por todo o espago - os campos. Os exemplos mais conhecidos sio o
campo elétrico e o campo magnético. As ondulagdes nesses campos manifestam-se como luz ou, mais genericamente, radiagio eletro-
magnética. Quando examinamos essas ondas eletromagnéticas microscopicamente, descobrimos que elas sdo compostas por particulas
denominadas foétons. Este fendmeno de “transformagio” de ondulagdes campais em particulas através dos efeitos quénticos & univer-
sal:

* Existe um campo do elétron cujas excitagdes quantizadas correspondem aos elétrons

* Existem campos de quarks, glions e bosons de Higgs
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¢ Cada particula constituinte de nosso corpo - € de todo o Universo - representa uma excitagio quantizada do campo subjacente

Os campos quinticos sio objetos intrinsecamente complexos por varias razdes. Contém em si toda a fisica, descrevendo intimeras
particulas interagindo de multiplas formas. Além disso, o principio de Heisenberg implica que campos quénticos nunca estio estaticos,
mas sim em constante flutuagdo. O vicuo quintico é uma “sopa” borbulhante de particulas e antiparticulas virtualmente criadas e
destruidas. Até mesmo o conceito de “nada” (vacuo) torna-se complexo na TQC. A introdugio de particulas distorce o vacuo de
maneiras nao triviais, e compreender estas distor¢des constitui fronteira ativa de pesquisa.

Na Fisica Classica campos sio gerados por fontes (“cargas”) associadas ds simetrias dos campos. O potencial elétrico de Coulomb
gerado por uma carga pontual em r = 0, por exemplo, é dado por:

Vir)= 1 Q

dmeg T

(2)

O que ocorre quando » — 0?2 A teoria classica apresenta singularidades. Serd que a teoria quintica resolve essas singularidades?
Sistemas quinticos sdo descritos por fun¢des de onda que introduzem incertezas fundamentais.

¢ Comprimento de onda Compton do elétron:

h
Ao = — 24 %1072 m (3)

* Incerteza minima na localizagio: ). representa a escala abaixo da qual a posi¢io do elétron torna-se indefinida

* Energia de flutuagio correspondente:

AFE = % ~ 0.5 MeV (4)

C

Para distincias 1 < A, tentativas de interagdo com o elétron levam i criagao de novas particulas. Este fendmeno revela a
necessidade de uma teoria que unifique consistentemente a relatividade e a mecanica quintica - a Teoria Quéntica de Campos.

1.3 Revisao: Mecinica Classica e Formalismo Hamiltoniano
13.a  Principio de Minima Agio

O principio de minima ag3o constitui um dos pilares fundamentais da mecénica classica, fornecendo uma formulagio elegante e po-
derosa para descrever a evolugdo temporal dos sistemas fisicos. A mecinica quintica se baseia no formalismo classico para a construgio
bésica das suas equagdes. Em particular, ¢ a partir do Hamiltoniano e das varidveis (g, p) do espago de fase que obteremos as equagdes
basicas que serdo quantizadas pelo formalismo canénico.

Para um sistema descrito por uma coordenada generalizada ¢(t) e com Lagrangiana L(t, ¢(t), ¢(t)) a agio ¢ definida como:

to d
. . q
s= [ Lo @) d, onde i) = 6
ty
Condigao variacional: As trajetorias fisicas sio aquelas que extremizam a agio:
05 =0 (condi¢do necessaria para trajetoria fisica) (6)
Exemplo ilustrativo: Para o oscilador harménico, a Lagrangiana é:
. Lo 2 2
L{g,q) = 5(¢" —w'¢") )
e a variacdo da a¢do escreve-se:
65[g,6q] = Slg + dq] — Slq] (8)
13.2 Derivagio das Equagdes de Euler-Lagrange
Para deduzir as equagdes do movimento, consideramos a variagao primeira da agao:
2 T9L OL
58 = —3q(t) + =>64(t) | dt + O(6¢>
[ Gttt + Goauto)| -+ 066 o)
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Aplicando a integragio por partes, [ udv = uv — [ v du, comu = %s e dv = 6¢(t) dt, obtemos:

2 9L AL t2 2 q (8L
Substituindo na expressdo original:
oL ot oL d oL )
w_[%wwL+A;Lm—ﬁ&J@wM+m@> (u)

Condigbes de contorno e principio variacional: considerando que d¢(t1) = 0 e dg(t2) = 0 (variagbes nos extremos sio nulas),
que 0.5 ndo pode depender de termos de primeira ordem em ¢ (t) (o principio de minima agio exige 0.5 = 0 para trajetdrias fisicas),
obtemos as equagdes de Euler-Lagrange:

OL d oL
—_— = (12)
dq dt 0q
Para o oscilador harménico simples, temos:
1
Sz/Ldtz/i(q'Q—quz)dt = {j+uw’q=0 (13)
A solugio da equagio do movimento é:
q(t) = Acos(w(t + tg)) + Bsin(wt) (14)
Especificando as condigGes iniciais:
g2 — q1 cos[w(ta — t1)]
t = M t = : A =
q(th) = qi;  qlt2) = g2 Snfw(ts — )] (15)
Generalizagoes e Formalismo Funcional
Derivada funcional: A condigio variacional pode ser expressa através da derivada funcional:
0S
—— =0 16
dq(t) 0e)
Formulagio com distribuigdes: Para derivadas de segunda ordem, reescrevemos usando distribuicdes:
i)+ a(t) = [t~ 1) + 80~ t)la(e)de (w)

onde §(¢t — t1)[f] = f(t1) define a a¢do da distribui¢io delta de Dirac.

Derivada funcional de funcionais lineares:  Para um funcional linear [ ¢(t) f(t)dt, temos:

oo [ = o) (8)
Extensio para Teoria de Campos classicos
Para um campo escalar em 3D:
Slol = 5 [ dwdt (Vo) (9
A derivada funcional fornece a equagio de movimento:
52??15) =-V?¢(z,t) = —A¢(x,1) (20)
Utilizamos a identidade:
V- (06V ) = V- Vo + 56V (21)
Aplicando o teorema da divergéncia:
/ BrdtV - (6¢Ve) = }{ §oV - dA (22)

sendo dA o elemento de 4rea da fronteira, com a condi¢io de que ¢(x,t) — 0 quando |z| — oo.
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13.3 Transformagio de Legendre e Formalismo Hamiltoniano

Para uma fungio f(z), definimos a transformagio de Legendre:

d d
= o) =pal) ~ falp), o= 5 ()
Aplicando essa transformagio para substituir ¢ por p:
_oL (24)
p= a4 24

Assumindo que possamos encontrar ¢ = v(p; ¢, t), definimos a Hamiltoniana como:

H(p,q,t) = [pqd — L(t, 4, D)) j—v (i) (25)
As equagdes de Euler-Lagrange transformam-se em:
dp OL
- = — (26)
dt  9q |4,
onde a solugio de % = v(p; q,t) deve ser substituida ap6s a diferenciagio. Calculando as derivadas parciais:
om_ 0, . ov oL oLov_ oL
g aq” “P9¢ 8¢  940q 9q
om0, ov oLov_
ap  op’ R T
Obtemos assim as famosas equagOes candnicas de Hamilton:
. OH . OH (27)
= — = —— 2
q ap e p dq 7
Agdo na forma Hamiltoniana:
S = ([ Ioi - Hp..0)t (25)
Variando a agao Hamiltoniana:
oOH oOH
6SH:/ G— — 5pdt—|—/ —p— —| dqdt, (29)
p dq
e utilizando integragdo por partes:
/p&q' dt = — /péq dt  (usando [p&q]ﬁf =0). (30)
Portanto, as condi¢des de extremizagdo levam a:
oSy . OH 6Sgy . OH
—=0=>¢=—; —=0=>p=———
5 1= 3y o p 34 (31)

Esta formulag:’lo Hamiltoniana proporciona uma transi¢ao natural paraaquantizagiao dos sistemas classicos, como veremos na préxima
segao.

1.3.4 Principio da Correspondéncia e Quantiza¢io Canénica

A quantizagio dos sistemas hamiltonianos segue o principio da correspondéncia, primeiramente articulado por Niels Bohr como
um principio orientador para o desenvolvimento da teoria quintica. Bohr reconheceu que qualquer teoria quéntica valida deve re-
produzir a fisica classica no limite em que os efeitos quénticos se tornam negligenciaveis. Este principio foi inspirado pelo sucesso das
condigdes de quantizagio anteriores (quantizagio de energia de Planck, integrais de espago de fase de Bohr-Sommerfeld-Wilson), mas
buscava uma conexao mais fundamental entre as descri¢des classica e quintica.

Na mecinica quintica moderna, este principio é matematicamente realizado através da quantizagao candnica, onde variaveis
classicas (¢(t), p(t)) sio promovidas a operadores quanticos (G(t), p(t)) que satisfazem as relagdes candnicas de comutagio:

[q(t), p(t)] = i (32)
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A conexio com a mecénica classica é explicitada através do teorema de Ehrenfest, que afirma que os valores esperados dos ope-
radores quinticos obedecem as equacdes de movimento classicas:

d . (P d . ov
%<q>— ; dt<p>=—<aq> (33)

m
Na imagem de Heisenberg, a evolugio dos operadores reflete diretamente a mecinica hamiltoniana classica:

dGi i i
E - h[H»qL dt - h[Hap] (34)

Estas equagdes recuperam a mecénica classica no limite 2 — 0:

dg OH
L= o)

[22:4 @_ oOH
dt  Op

A contribui¢do profunda de Paul Dirac foi reconhecer que a correspondéncia entre os colchetes de Poisson classicos e os comutadores
quanticos fornece a ponte essencial para a quantizagao:

1

{¢,p}s=1 — %[Q»ﬁ] =1 (36)

Esta abordagem algébrica generaliza naturalmente para fun¢des arbitrarias:

(9, (4, P)] = ih7~ (37)

Nesta forma, relagoes algébricas entre operadores capturam a esséncia da teoria quintica, independentemente de qualquer representagio
especifica dos estados. Essa percepgio foi crucial para o desenvolvimento da teoria quintica de campos, onde as mesmas relagoes de
comutagio se aplicam aos operadores de campo. No entanto, uma notagio onde os operadores variam com o tempo e os estados per-
manecem fixos pode ser substituida por uma onde os estados quinticos carreguem a evolugio temporal e os operadores permanegam
fixos caracterizando os observaveis da teoria de maneira equivalente a formulagio acima. Nas notagdes de Dirac ou de Schrodinger
os estados quinticos tem papel central e como elas também se tornam ateis em diversos problemas de interesse atual na TQC nos
tornaremos para elas pelas proximas se¢des.

1.4 Notagao de Dirac e Estrutura Matematica da Mecénica Quintica
Antes de listarmos as definigbes necessarias para uma compreensio mais técnica da estrutura matematica da mecanica quantica, é

importante relembrarmos os postulados da mesma em sua versio mais direta.

Postulado 1 — Espago de estados

A cada sistema fisico associa-se um espago de Hilbert complexo separavel 7. Um estado fisico é representado por um vetor de estado
|¢), normalizado, ou por um operador densidade p que descreve estados puros e mistos. Estados puros sio representados por funcdes

de onda ¢(z) = (x[¢) no espago de configuracdes.

W =1, =Y mlnwi, /|1/J(x)|2dx _1

Postulado 2 — Observaveis

Cada observavel fisico é representado por um operador auto-adjunto A no espago de Hilbert. Seus resultados possiveis sio determi-
nados pelo espectro do operador, formalizado pela decomposi¢do espectral de von Neumann que associa a cada intervalo do espectro
um projetor.

A= /adﬁA(a).
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Postulado 3 — Regra de Born e valores esperados

A probabilidade de obter um valor a na medida do observavel A, quando o sistema estd no estado p, é dada pela regra de Born. Para
estados puros [t)), a probabilidade pode ser escrita diretamente em termos da fun¢io de onda 1) (), usando representagdes apropriadas
do operador projetor na base de posi¢des ou de autovalores do observavel.

P(a) = Tr(p Pa(a)),  Pla) = (¢[Pa(a)y).

Na base de posi¢des: P(x0) = |[¢(z0) %

Para observaveis continuos: P(a) = |{(a]v)) \2 .

(4) = Tr(pA) = (Y| Ajy) = /W(JS) (A¢)(x) de.

Postulado 4 — Evolugio temporal

A evolugio temporal de um sistema quintico é unitaria e gerada pelo Hamiltoniano H. Dependendo da representagio (Schrédinger,
Heisenberg ou intera¢io), a evolugio ocorre nos estados, nos operadores ou em ambos. Todas as representag¢es sao matematicamente
equivalentes e relacionadas por transformagdes unitarias.

Representagio de Schrédinger:

L d . dp
i) = Hp),  in = [H,p).

Representagio de Heisenberg:

) R A . A
Ap(t) =UT(t)AsU(t), ihddTH = [Ag, H] +ma S

ot

Representagio de Dirac/Interagio:

[r(t)) = e Mps(t)),  Ap(t) = eHot/h AgemHot/h,
Z'h%hm(t» — Vi) [0r(1)),  Vi(t) = ettot/hy g=itot/h,

Postulado s — Processo de medida (colapso)

Apds uma medida com resultado a, o estado do sistema sofre a atualizagao ndo unitaria descrita pela regra de proje¢io de von Neumann
(ou de Liiders). Esse processo descreve a transigao descontinua do estado fisico causada pelo ato de medir um observavel.

Pa(a))) Pa(a)pPa(a)
VT T C T TipPata)

1.4.1 Espagos Vetoriais em Mecénica Quintica
A notagio de Dirac proporciona uma linguagem poderosa e elegante para descrever a estrutura matematica da mecinica quantica.

* Espagos de dimensio finita: Compostos por uma colegdo discreta de componentes, representando sistemas com namero
finito de estados.

* Espagos de dimensio infinita: Possuem infinitas componentes. O exemplo fundamental é o espago L? das fungdes de onda:
2 ={vicoc| [ uopa<) 69

* Interpretagio de fungdes como vetores: Uma funcio ¢)(q) € L? pode ser vista como um vetor com infinitas componentes

g = ¥(q).
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spaco de estados: Para uma particula pontual, o espaco de estados é exatamente uando ¢ = x representa a posicio.
* Espago de estados: P particula pontual pago de estad t tL2qd p ta a posig

* Generalizagio para TQC: Em Teoria Quintica de Campos, as coordenadas x sio substituidas por configuracdes de campos
¢(z) e os estados tornam-se funcionais ¥[d(x)].

1.4.2 Operadores Lineares ¢ Suas Propriedades

Linearidade: Um operador A : V' — V satistaz:
Alalv) + Blw)) = aA|v) + BA|w) (39)

Formas lineares e produtos escalares:
* Formas lineares f : V — C sio funcionais que atuam em vetores |v) produzindo niimeros complexos ( f|v)
* O produto escalar (v|w) permite definir elementos de matriz de operadores: (w|A|v)

* Autovetores e autovalores: Se |v) é autovetor de A, entio A|v) = A|v)

Hermiticidade e conjugagio:
* O produto escalar ¢ Hermitiano se (v|w)* = (w|v), garantindo que (v|v) € R
* O conjugado Hermitiano A' ¢ definido por:

(v|ATjw) = (w|AJv)* (40)

* Propriedades da conjugag¢io Hermitiana:

(A+B)f = A" + Bt
(AA)T = A% AT
(AB)T = BT AT

1.4.3 Classificagio de Operadores e Suas Propriedades Espectrais

Tipos fundamentais de operadores:
* Hermitiano: A = AT (observaveis fisicos)
* Anti-Hermitiano: A = — A"

* Unitario: AAT = ATA = I (evolugdes temporais, rotagdes)

Propriedades espectrais de operadores Hermitianos:
* Resultados de medida: O resultado de qualquer medida ¢ sempre um autovalor do operador correspondente
* Observaveis: Todos os observaveis fisicos sio representados por operadores Hermitianos

* Autovalores reais:
Se Av;) = \i|vi) e A = AT, entdo \; € R (41)

* Ortogonalidade de autovetores:
<Ui|’l}j> =0 para )\1 7£ )‘j (42)

1.4.4 Espagos de Hilbert: Estrutura e Propriedades

Bases em dimensio finita: Em um espago vetorial N-dimensional, qualquer vetor pode ser expandido em uma base:

N
vi) = Zvn‘en> (43)
n=1
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Ortonormalidade: Uma base {|e,,) } € ortonormal se:
<em‘en> = dmn (44)

Produto escalar em bases: Em uma base ortonormal, o produto escalar torna-se:
N
.
(Wilv;) = 0l vjm (45)
n=1

Condigio de Hilbert em dimensio infinita: Em espagos de dimensio infinita, a condi¢do para pertencer ao espago de Hilbert é:

o0

(ilvi) = D [vin|* < o0 (46)

n=1

Esta condigio garante a completude do espago e a existéncia de limites adequados.

Na formulagdo matematica da mecinica quintica proposta por Dirac e sistematizada por von Neumann, os estados fisicos sao
representados como vetores de um espago vetorial complexo dotado de estrutura geométrica e topolégica bem definida. Esse espago
¢ um espago de Hilbert, cuja defini¢do completa exige as propriedades de completeza e separabilidade. Ambas desempenham papéis
centrais para a consisténcia fisica e matematica do formalismo de bras e kets e da teoria espectral de observaveis.

Espagos de Hilbert

Um espago de Hilbert 7 é um espago vetorial complexo munido de um produto interno (-, -) : H x H — C, que satisfaz linearidade
no primeiro argumento, conjugagio no segundo e positividade. Esse produto interno induz uma norma ||z|| = \/(z, ), de modo
que H se torna um espago normado. A exigéncia adicional de que o espago seja completo em relagio a essa norma distingue os espagos
de Hilbert dos espagos pré-Hilbert.

A ideia de completude garante que limites de sequéncias de estados, expansdes em bases, desenvolvimentos de Fourier generalizados
e procedimentos de aproximagio conduzam sempre a estados que permanecem dentro do préprio espago. Sem a propriedade de
completude, o espago de estados seria instavel sob operagdes de limite, e ferramentas fundamentais, como a decomposicio espectral
de operadores auto-adjuntos, deixariam de ser garantidas. Assim, a completude assegura que opera¢des matematicas fundamentais a
teoria resultem sempre em estados fisicamente validos.

Completeza

Um espago normado ¢ dito completo quando toda sequéncia de Cauchy {x,,} C H converge para um limite também pertencente
ao espago. Essa propriedade ¢ essencial na mecinica quéintica porque a teoria espectral de operadores auto-adjuntos, que fundamenta
a interpreta¢io dos observaveis, requer a existéncia de limites em norma e medidas espectrais bem definidas. A evolu¢do temporal
unitéria, formalizada pelo teorema de Stone, também depende da completeza do espago para garantir que o operador unitario U (t) =

e~ tHt/h esteja corretamente definido em todo o dominio relevante. Além disso, a convergéncia de expansdes de estados em bases

ortonormais, como
|1/)> = Z Cn|n>a
n

depende diretamente da completeza do espago, que garante a existéncia do limite em norma. Desse modo, a completude é indispensavel
para que o formalismo quantico seja matematicamente estavel e operacionalmente consistente.

Separabilidade

O espago de Hilbert utilizado na mecénica quintica deve ser também separivel. Um espago € dito separavel quando admite um con-
junto denso enumeravel, ou, de forma equivalente, quando possui uma base ortonormal enumeravel {e, },en. Isso significa que
qualquer vetor do espago pode ser aproximado arbitrariamente bem por combinagdes lineares finitas desses vetores. A separabilidade
possui importincia fisica imediata, pois qualquer experimento real acessa apenas um ntimero contavel de resultados distinguiveis,
e a teoria deve refletir essa limitagdo fundamental da informacio fisica. Ela também é essencial para o formalismo de Dirac, pois a
representagio de estados como séries de coeficientes, como em

|¢> = Z Cn|n>a
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pressupde a existéncia de bases enumeraveis. Na auséncia de separabilidade, esse tipo de expansio deixaria de ser possivel e a formulagio
de bras e kets perderia coeréncia operacional.

A separabilidade garante ainda que a teoria espectral de observaveis nio produza espectros com cardinalidade excessivamente
grande, evitando objetos que nio correspondem a nenhum sistema fisico realizivel. Ela impede o surgimento de operadores pa-
tologicos e assegura a aplicabilidade de teoremas estruturais fundamentais, como o teorema de Stone—von Neumann e a construgio
de representagdes via o formalismo de GNS. Em consequéncia, a separabilidade constitui uma condigio estrutural essencial para que
o espaco de estados represente fielmente a estrutura fisica dos sistemas quinticos.

A combinagio das propriedades de completeza e separabilidade garante que o espaco de estados da mecinica quintica permita
trabalhar com limites, séries e expansdes convergentes; possua estrutura suficientemente regular para representar observaveis auto-
adjuntos e sua dinimica; reflita a natureza finita e contavel da informagio experimental; e seja compativel com a formulagio de bras e
kets e com a teoria espectral de von Neumann. Em sintese, um espago de Hilbert completo e separavel constitui o ambiente matematico
natural em que o formalismo de Dirac-von Neumann opera de maneira rigorosa, consistente e fisicamente signiﬁcativa.

Ls Equagao de Schrodinger e o formalismo de Dirac

A equagio de Schrodinger € o ponto de partida para a descrigdo da evolugdo temporal de sistemas quénticos. Ela relaciona o estado do
sistema, representado por uma fungio de onda ¥(t), com o operador hamiltoniano H que descreve sua energia total:
o

ihe = Hy. (47)

No formalismo mais geral introduzido por Dirac, os estados sdo vetores |1)) em um espago vetorial abstrato (espago de Hilbert), e
os observaveis fisicos sdo representados por operadores lineares. Essa linguagem ¢ particularmente Gtil para descrever superposigoes,
emaranhamento e medigdes.

No formalismo de Schrédinger, o estado quéntico de um sistema ¢é representado por uma fungio de onda ¥(r, t), que satisfaz a
equagio de Schrédinger dependente do tempo:

0 A
Zhal/}(ra t) = Hw(ra t) (48)

onde H ¢ o operador Hamiltoniano.
No formalismo de Dirac, os estados sio representados por vetores em um espago de Hilbert, denotados por |1()), e a evolugio
temporal ¢ dada por

(1) = A0, (49)
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