Minicurso — Introdu¢ao a Teoria Quantica de Campos

Aula 2 — Aplica¢Oes basicas de Mecanica Quantica

AWA NI

- Francisco Bento Lustosa
@ Faculdade de Educacgao, Ciéncias e Letras de Iguatu

¢ Universidade Estadual do Ceara
. CEARA ACNPg




"E disseram uns aos outros: Vamos,
edifiquemos para nés uma torre cujo topo
alcance o céu; e fagamos para nés um nome. E
o Senhor disse: Vamos, des¢camos e
confundamos ali a sua linguagem, para que
nao entendam a fala uns dos outros.”

Génesis 11:3-7

Ehrenfest em casa em Leiden e Albert Einstein com Paul Ehrenfest, Jr. no colo
(1920)

Na Conferencia de Solvay, de 1927, Paul Ehrenfest escreveu a citacao biblica acima no quadro
durante uma das discussdes, evidenciando o estado total de confusao entre os presentes.



“Eu acho que a fisica nao explica nada. Eu
acho que a fisica representa. A fisica é
uma forma da gente representar... da
mesma forma que um artista representa a
natureza através de uma pintura, uma
escultura... o fisico vai olhar pra natureza,
ele vai tentar representar os fenbmenos.
Representando... isso pode até virar uma
descricao. Entao “Ah, eu posso
descrever..” Mas eu acho que explicar a
natureza do ponto de vista da fisica
quando se diz isso me déi um pouquinho...
porque eu acho muito pretensioso que a
gente expligue a natureza. A natureza
pode nao ser nada disso que a gente
pensa que é. A gente simplesmente da
representacoes.”

Entrevista com Helayel-Neto (CBPF)


https://www.youtube.com/watch?v=Bm4J6kBMWH4&t=438s

Na ultima aula...

Derivadas da Hamiltoniana: Calculando as derivadas parciais:
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Equacoes de Hamilton: Obtemos assim as famosas equacoes canonicas:
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Na ultima aula...

Equacoes do movimento: As equacoes de Heisenberg descrevem a evolucao temporal dos operadores:
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Limite classico: Estas equacoes recuperam a mecanica classica no limite A — 0:
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Na ultima aula...

A notacao de Dirac proporciona uma linguagem poderosa e elegante para descrever a estrutura matematica da
mecanica quantica.

e Espacgos de dimensao finita: Compostos por uma colecao discreta de componentes, representando sistemas
com numero finito de estados.

e Espacos de dimensao infinita: Possuem infinitas componentes. O exemplo fundamental é o espaco L? das
funcoes de onda:

r={y.coc 'f 9(q)Pdg < oo
— 0
e Interpretacio de fungdes como vetores: Uma funcao 1(q) € L? pode ser vista como um vetor com
infinitas componentes v, = ¥(q).

e Espaco de estados: Para uma particula pontual, o espaco de estados ¢ exatamente L? quando ¢ = x
representa a posicao.

e Generalizacao para TQC: Em Teoria Quantica de Campos, as coordenadas x sao substituidas por confi-
guracoes de campos ¢(x) e os estados tornam-se funcionais ¥[¢(x)].



Hoje...

Um operador A : V — V satisfaz:

Terminar a notacao de Dirac Alav) + Blw)) = aAlv) + BA|w)

Definir a evolucao para estados gerais

f : V — C sao funcionais que atuam em vetores |v)

Derivar a equacao de Schrodinger?
produzindo nimeros complexos { f|v)

Barreira e Poco de Potencial

Se |v) é autovetor de A, entdao Alv) = A|v)

Introdugcao ao Oscilador Harmonico Quantico

<?J‘AT \m = <’H“A“U) Tipos fundamentais de operadores:

e Hermitiano: A = A" (observéveis fisicos)

)
(A+B) = A" + BT
(AA)T = A* AT
(AB)T BT AT

e Anti-Hermitiano: A = — AT

e Unitdrio: AA" = ATA = I (evolucdes temporais, rotacoes)



Hoje...

Propriedades espectrais de operadores Hermitianos:
e Resultados de medida: O resultado de qualquer medida ¢ sempre um autovalor do operador correspondente
e Observaveis: Todos os observaveis fisicos sao representados por operadores Hermitianos

e Autovalores reais:
Se Alv;) = \i|vi) e A= AT, entao \; € R

e Ortogonalidade de autovetores:
(vilv;) =0 para A\; # A,

Espacos de Hilbert: Estrutura e Propriedades
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Barreira de Potencial

Physics with Maple —14.4



Oscilador Harmonico
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Physics with Maple — 15.4
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Mecanica quantica: uma revolugcao em andamento

Nobel 2025 — Tunelamento macroscoépico: “FOR THE DISCOVERY OF MACROSCOPIC QUANTUM MECHANICAL
TUNNELLING AND ENERGY QUANTISATION IN AN ELECTRIC CIRCUIT”

- |NNONCAIEEIR, A. J. Leggett, “Influence of Dissipation on Quantum Tunneling in Macroscopic Systems”, Phys Rev. Lett, 46,
211 (1981).

- |NIONCAEIE, A. J. Leggett, “Quantum Tunneling in a Dissipative System”, Annals Phys., 149 (1983).

- J. M. Martinis, M. H. Devoret, J. Clarke, “Energy-Level Quantization in the ZeroVoltage State of a Current-Biased Josephson
Junction”, Phys. Rev. Lett. 55, 1543 (1985).

CALDEIRA AND LEGGETT
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Duvidas?
chico.lustosa@uece.br
Instagram: @profchicolustosa
X/Twitter: @LustosaChico

Amir Caldeira (UNICAMP)  Philip Stamp (UBC)  Eu! (UECE)
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