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Cenas dos ultimos capitulos

A fisica do século XIX parecia estar quase completa,
baseada na mecanica newtoniana, na termodinamica
e na teoria eletromagneética de maxwell

No inicio do século XX o surgimento das teorias
relativisticas e quanticas levou a uma mudanca radical
sobre a compreensao da realidade

A ideia de atomos como elementos fundamentais logo
deu lugar a ideia de particulas que por sua vez hoje
sao entendias como representacdes de campos
fundamentais

Para entender a origem desses campos, estudamos os
conceitos basicos e o formalismo matematico da
teoria quantica nao-relativistica...

Ludwig Boltzmann
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Cenas dos ultimos capitulos

1900 — Quantizacao de niveis de energia reSPONSAVEIS  rayonieans  wen

pela radiacao do corpo negro
1905 — Quantizacao da radiacao responsavel pelo )
efeito fotoelétrico
Freguency

1913 — Quantizacao do momento angular orbital do

elétron L = n*\hbar %\‘

1916 — Quantizagdo da agdo periodica de Sommerfeld EEEEEEEEEER
$p dg =nh



Cenas dos ultimos capitulos

1924 — Relacdes de de Broglie para ondas de matéria
(p=Fk,A\=21t/k, E=Ffw,v=21w)

1925 — Heisenberg propoe a formulacao em termos de
matrizes, melhorada por Dirac e colocada na forma de
vetores em espacos de Hilbert

1926 — Schrodinger apresenta sua equacao de onda no
artigo “Quantizacao como um problema de
autovalores”, onde ja demonstra a solucao da funcao
de onda para o atomo de Hidrogénio

1926 — Max Born introduz a interpretacao
probabilistica da funcao de onda, associando
resultados de medidas ao moddulo quadrado da
mesma.
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Cenas dos ultimos capitulos

A Conferéncia de Solvay de 1927

* Schrodinger apresentou uma teoria baseada em
pacotes de onda evoluindo no espaco-tempo. Ele
acreditava que Y representava uma distribuigcao fisica
real no espaco, como uma densidade de carga difusa,
e nao apenas uma probabilidade.

* Heisenberg apresentou na mesma conferencia a
sua mecanica de matrizes que posteriormente foi
demonstrada como equivalente a mecanica
ondulatéria de Schrodinger quando aplicada a
interpretacdao probabilistica de Born a funcao de
onda.

* Louis de Broglie apresentou uma teoria com ondas
E particulas — nessa teoria a matéria é guiada por
uma onda de fase (a onda-piloto) que evolui num
espaco multi-dimensional de configuracoes.




Cenas dos ultimos capitulos

A Conferéncia de Como de 1927

* Niels Bohr introduz o principio de complementaridade e fundamenta o formalismo quantico de
Heisenberg, Born e Dirac em uma descricao que depende crucialmente de um observador ou aparato
de medida classico para a definicao de estados quanticos estabelecendo assim a interpretacao de
Copenhague.

* Além da evolucdao de estados quanticos ser descrita pela equacao de Schrodinger (ou sua forma
equivalente nas equacOes de Heisenberg), a interpretacdao de Copenhague (referida apenas como
“Mecanica Quantica” de forma geral) é baseada nos seguintes postulados:

— Todo sistema fisico é descrito por um vetor (ket) em um espaco de Hilbert;

—> As grandezas fisicas observaveis sao representadas por operadores Hermitianos (auto-adjuntos®)
nesse espaco de estados;

— Os unicos resultados possiveis de uma medida de um determinado observavel sao os autovalores
associados ao seu operador;

—> A probabilidade de encontrar um ou outro valor é determinada pelo mdédulo quadrado da funcao
de onda naquele intervalo;

—> Apds uma medida, o estado quantico colapsa para o autovetor correspondente ao autovalor
observado



No capitulo de hoje...

Solucao da equacao de Schrodinger para potencial constante; barreira e
poco de potencial

O oscilador harmonico quantico; construindo estados e definindo o vacuo;
Exercitando solucdoes com o Maple;

Introduzindo o conceito de vacuo quantico..
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Barreira de Potencial

Physics with Maple —14.4



Oscilador Harmonico
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Barreira de Potencial (E >V)

. | v
¥ = y¥e(z) exp (— %‘t l
x=0
—}2 Fia. 6

Hy = 5—-v¥ + V(z)y = Ey 41 = B oxp (“l:_‘”) -+ Cexp(_ipm:)

v+ ST E = V(@) = 0 = 4 exp (i22)

Ve = A exp [z vV2m(E — V) %] + Bexp[—i\/Zm(E — V)%]

¥ = Aexp [z(p:c h_ Et)] + Bexp [ — i(Pﬂ;L"i‘ Et)] = 42mE — V).



Barreira de Potencial (E < V)
h? 622
2m 69.72

(E<V)

+ (V—-EN=0

v =_ A exp (\/2'm(V — E) %) + B exp (_ V(Y - E) %)
A = 0.

v = C exp (z vV 2mE %) + D exp (—i vV 2mE %)

C+D=B



Barreira de Potencial (E < V)

We see from eq. (18) that the entire wave is reflected because the
reflected intensity is equal to the incident intensity. Because the wave

(A=
AR

equation implies the conservation of probability, we conclude that no
electrons are transmitted.

Problem 3: Prove that the probability current is zero for Case B, that is, for

E<V.
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Barreira de Potencial (E < V)

m = 9.100000000 107!
V0 == 1.600000000 107
Ji == 1.055000000 10*
a = 1.800000000 1071°
En :=9.600000000 107
W = 9.099526066 10%°
kI:=1.252907044 10"
K2 = 1.022994318 10%°
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Soilnl = solve( {psil(0)
=psi3(a), D(psil)(0) =

D(psi2)(a)

= psi2(0), psi2
D(psi2 ]
=D(psi3)(a)}, {B,



Barreira de Potencial (E < V)

Psil == (x, t) —psil (x)-exp(-1Lw-f):
Psi2 = (x, 1) —psi2(x)-exp(-Iw-1):
Psi3 == (x, t) —psi3(x)-exp(-Iw-1):

br = pz’ecmrme([} < xand x < a, % x << 0,
0,a<x, DJ :

ptl = m:-'inm.fe[Re(Psif[x, f)),x=-4-a.0,t
6-P1 ] _

w

=0..

pt2 == m?imare(Re[Psii’[x, £)),x=0.a,t=0
6-P1 J _

w
pi3 = m:-*.ima.fe(Re[Pﬂ:?{x, f)).x=a.(a+5
6-Pi ] _

w

a),t=0..

pbr = plot(br,x=-4-a..5-a, color = blue,
thickness=2) :

Refazer essa animagao com o software ou
linguagem de programacao da sua escolha!
Maple (modificado)

MATLAB

Wolfram Mathematica

Python

C++

Fortran 90



Poco potencial?

1
~ 1+ (p1/p2 — po/p1)’ sin® (2p.a/k)
This result is very interesting. First, we see that for p1 = p;, T = 1.

This is very natural, because there is then no potential well at all. If
D1 # Do, the transmissivity is, in general, less than unity, indicating that

T

(50)

some reflection has taken place. Thisreflection from an attractive poten-_

tial is a result of the wave nature of matter; it resembles the reflection of
sound waves from the open end of an organ pipe. There is, however, one
case in which T = 1eventhough p; # p., namely, when sin? (2p.a/k) = 0,
or p; = Nxh/2a, where N is an integer.

How can we understand this result? To see what it means, we note

X =-0

V—

V—]




Oscilador Harmonico Quantico

from pylab import *
from scipy.integrate import odeint

from scipy.optimize import brentq def find_all _zeroes(x,y):
#import matplotlib as plt won

Gives all zeroes in y = f(x)

def v(x): Wi
Potential function in the Harmonic oscillator. Returns V = 8.5 k x~2 if [x|&1lt;L and @.5%k*L+2 otherwise all zeroes = []
o s < sign(y)
if abs(x)< L: for i in range(len(y)-1):
return 0.5%k*x**2 if s[i]+s[j_+1] == 9:
else:

zero = brentg(Wave function, x[i], x[i+1])
all zeroes.append(zero)
def SE(psi, X): return all zeroes

o

return o.5%k*L**2

Returns derivatives for the 1D schrodinger eq.
Requires global value E to be set somewhere. State® is first derivative of the

wave function psi, and statel is its second derivative. def find_analytic_energies(en):
statee = psi[1] Teul 1 f he h . 1 . 1ytical
statel = (2.0*m/h**2)*(V(x) - E)*psi[e] Calcu ate§ Energy values for the harmonic osci 'f(or‘ using analytica
return array([statee, statei]) model (Griffiths, Introduction to Quantum Mechanics, page 35.)

def wave function(energy): E max = max(en)
print('Allowed energies of HO:')

Calculates wave function psi for the given value

. 1 =0
of energy E and returns value at point b while((i+0.5)*h*w < E max):
global psi Pr‘in‘t( "%. 217" %((i+0.5)*h*w))
global E 1+=1

E = energy
psi = odeint(SE, psi_init, x)
return psi[-1,0]

Continiua em https://helentronica.com/2014/12/28/gm-with-python-swing-on-the-quantum-harmonic-oscillator/



Oscilador Harmonico Quantico

Wave function
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Proximos capitulos

O oscilador harmonico e seu
estado de vacuo

Campos livres e o vacuo
Energia de ponto zero
Flutuacdes quanticas do vacuo

Criacao e destruicao de
particulas

Integrais de caminho...
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